A Study of Qualitative Knowledge-Based Exploration for Continuous Deep Reinforcement Learning

نویسندگان

  • Chenxi Li
  • Lei Cao
  • Xiaoming Liu
  • Xiliang Chen
  • Zhixiong Xu
  • Yongliang Zhang
چکیده

As an important method to solve sequential decisionmaking problems, reinforcement learning learns the policy of tasks through the interaction with environment. But it has difficulties scaling to largescale problems. One of the reasons is the exploration and exploitation dilemma which may lead to inefficient learning. We present an approach that addresses this shortcoming by introducing qualitative knowledge into reinforcement learning using cloud control systems to represent ‘if-then’ rules. We use it as the heuristics exploration strategy to guide the action selection in deep reinforcement learning. Empirical evaluation results show that our approach can make significant improvement in the learning process. key words: deep reinforcement learning, knowledge, exploration strategy, cloud control systems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

A Study of Count-Based Exploration for Deep Reinforcement Learning

Count-based exploration algorithms are known to perform near-optimally when used in conjunction with tabular reinforcement learning (RL) methods for solving small discrete Markov decision processes (MDPs). It is generally thought that count-based methods cannot be applied in high-dimensional state spaces, since most states will only occur once. Recent deep RL exploration strategies are able to ...

متن کامل

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning

Count-based exploration algorithms are known to perform near-optimally when used in conjunction with tabular reinforcement learning (RL) methods for solving small discrete Markov decision processes (MDPs). It is generally thought that count-based methods cannot be applied in high-dimensional state spaces, since most states will only occur once. Recent deep RL exploration strategies are able to ...

متن کامل

CRFA-CRBM: a hybrid technique for anomaly recognition in regional geochemical exploration; case study: Dehsalm area, east of Iran

Identification of geochemical anomalies is a significant step during regional geochemical exploration. In this matter, new techniques have been developed based on deep learning networks. These simple-structure-networks act like our brains on processing the data by simulating deep layers of thinking. In this paper, a hybrid compositional-deep learning technique was applied to identify the anomal...

متن کامل

Bayesian Deep Q-Learning via Continuous-Time Flows

Efficient exploration in reinforcement learning (RL) can be achieved by incorporating uncertainty into model predictions. Bayesian deep Q-learning provides a principle way for this by modeling Q-values as probability distributions. We propose an efficient algorithm for Bayesian deep Q-learning by posterior sampling actions in the Q-function via continuous-time flows (CTFs), achieving efficient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 100-D  شماره 

صفحات  -

تاریخ انتشار 2017